

READY MIX CONCRETE PRODUCED BY:OZINGA

FACILITY: Kenosha 712

STRENGTH: 3000 psi @ 28 days

MIX NAME: 1050U

IMPACT INDICATOR		PER YD3	PER M3
Global Warming Potential	kg CO ₂ e	157.50	206.01
Ozone Depletion	kg CFC11e	4.77E-06	6.23E-06
Acidification	kg SO2e	0.58	0.75
Eutrophication	kg NE	0.30	0.40
SFP (Smog)	kg O3e	13.54	17.71
Non-renew. energy	MJ, NCV	1520.58	1988.84

GENERAL INFORMATION						
Declared Product	Ready-mixed concrete produced by Ozinga	a				
Date of Issue	June 01, 2023					
Period of Validity	August 13th, 2025					
EPD Holder	Ozinga Bros., Inc. 19001 Old LaGrange Road Mokena, IL 60448 www.ozinga.com	OZINGA °				
Program Operator	ASTM International 100 Bar Harbor Drive West Conshohocken, PA 19428-2959, USA	ASTM INTERNATIONAL Helping our world work better				
LCA and EPD Developer	WAP Sustainability Consulting 1701 Market Street Chattanooga, TN 37408 www.wapsustainability.com	Athena Sustainable Materials Institute				
Core PCR	ISO 21930:2017 Sustainability in Building Declaration of Building Products	Construction - Environmental				
Sub-category PCR	NSF International Product Category Rule (PCR) for Concrete Version 2.2 (December 2022), Verified by Thomas P. Gloria, Ph.D., Industrial Ecology Consultants					
Independent LCA Reviewer and EPD Verifier	Independent verification of the declaration and data, according to ISO 21930:2017 and ISO 14025:2006 ☐ Internal ☑ External Thomas P. Gloria, Ph.D., Industrial Ecology Consultants					
For Additional Explanatory Material Manufacture Representative: Ryan Cialdella (ryancialdella@ozinga.com) Software Tool: Theta by WAP Sustainability Consulting V.1.0.						
The declared product meets the following pu						

The declared product meets the following product specifications:

- ACI 211: Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete.
- ACI 318: Building Code Requirements for Structural Concrete.
- ASTM C94 Standard Specification for Ready-Mixed Concrete.
- CSI Masterformat Division 03-30-00: Cast-in-Place Concrete.
- UNSPSC Code 30111500: Ready Mix

Disclaime

EPDS are comparable only if they comply with this document, use the same sub-category PCR where applicable, include all relevant information modules and are based on equivalent scenarios with respect to the context of construction works.

This EPD was calculated using manufacturer specific cement data that represents 100% of the total cement used in this mix.

METHODOLOGICAL FRAMEWORK

DECLARED UNIT

The declared unit is 1 cubic meter (1 cubic yard) of ready mixed concrete product. The defined concrete mix is intended for commercial applications developed and produced by Ozinga. Key product variables include:

- Compressive strength Compressive strengths are represented in the mix design and includes the number of days after pouring as apart of the reference value: e.g. 3,000 psi @ 28 days; 4,000 psi @ 56 days; 6,000 psi @ 90 days; etc.
- Water to cementitious materials ratio (w/cm) Varies but generally lower for a higher strength non-air entrained mix design
 (above 5,000 psi (34.5 MPa)) in accordance with ACI 211.1 recommendations
- SCM use various mix designs call for Portland cement displacement by incorporating fly ash (FA) and/or slag cement (SL)
- Admixtures use Admixtures use was specified for the mix design that was modeled. Admixtures include airentraining admixture, water reducing and accelerating admixtures, high range water reducer admixtures, and carbon dioxide.
- No hazardous substances are present in the declared product.
- The ready mixed concrete products represented in this EPD are comprised of:
 BatchWater (ASTM C1602), Air Entrainer (ASTM C260), Crushed Coarse Aggregate (ASTM C33), Natural Fine Aggregate (ASTM C33), Carbon Dioxide (ASTM C494), Portland Limestone Cement (ASTM C595), Fly Ash (ASTM C618)

SCOPE OF LCA

A summary of life cycle stages included in the EPD is identified in Figure 1 as follows:

- A1: Raw Material Supply (upstream processes): Extraction, handling, and processing of the raw materials used in the production of concrete, cement, supplementary cementitious materials, aggregate (coarse and fine), water, admixtures, and other materials or chemicals used in concrete mixtures.
- A2: Transportation: Transportation of these materials from the supplier to the 'gate' of the concrete producer.
- A3: Manufacturing (core processes): The energy used to store, batch, mix and distribute the concrete and operate the facility (concrete plant).

A summary of activities excluded from the EPD is as follows:

- Production, manufacture, and construction of manufacturing capital goods and infrastructure.
- Production and manufacture of production equipment, delivery vehicles, and laboratory equipment.
- Personnel-related activities (travel, furniture, and office supplies)
- Energy and water use related to company management and sales activities.

CONTINUED ON NEXT PAGE

METHODOLOGICAL FRAMEWORK CONTINUED

CUT-OFF RULES

The cut-off criteria for all activity stage flows considered within the system boundary conform with ISO 21930: 2017 Section 7.1.8. Specifically, the cut-off criteria were applied as follows:

- All inputs and outputs for which data are available are included in the calculated effects and no collected core
 process data
 are excluded.
- A one percent cut-off is considered for renewable and non-renewable primary energy consumption and the total
 mass of inputs within a unit process. The sum of the total neglected flows does not exceed 5% of all energy
 consumption and mass of inputs.
- All flows known to contribute a significant impact or to uncertainty (e.g., portland cement and admixtures) are included.
- The cut-off rules are not applied to hazardous and toxic material flows all of which are included in the life cycle inventory.
- Proxy data was used for admixtures used by Ozinga that did not align with any of the admixture categories published in the European Federation of Concrete Admixtures Associations (EFCA) EPDs. In those cases, the Water Reducing Admixture data was selected as a conservative assumption as per the NCF PCR Appendix A.

ALLOCATION

The allocation of co-products or secondary flows cross the system boundary conforms with the ISO 21930: 2017 Section 7.2.4. allocation criteria were applied as follows:

- Allocation was not applied to any of the gate-to-gate production facilities.
- For Secondary Data sources, the NSF PCR default allocation selection (i.e. "Cut-off" or "Alloc Rec") was applied.
- The product category rules for this EPD recognize fly ash, silica fume and slag as recovered materials and thus the environmental impacts allocated to these materials are limited to the treatment and transportation required to use as a concrete material input.
- A portion (30%) of the reported fleet energy use for truck mixing plants was allocated to the mixing facility.

ROILDII	NG LIF	FCYC	JLE INF	-ORM	AHOI	1 MOI	JULES	5 (X: II	nclude	d in LC	A; MN	D: Mod	lule Not I	Declare	ed)
Production State Construction Stage			Use Stage						End-Of-Life Stage						
Extraction Upstream Production	Transport to Facility	Manufacturing	Transport to Site	Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational Energy Use	Operational Water Sqc	De-Construction /Demolition	Transport to Waste Process, or Disposal	Waste Processing	Disposal of Waste
A1	A2	А3	A4	A 5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4
X	Х	X	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND

DATA SOURCES

This EPD is based on foreground LCI data collected from the participating company's production facilities for the calendar year 2020. All upstream material, resource and energy carrier inputs have been sourced from various industry-average datasets and literature. Many of these data sets are defaulted to those specified for use in the NSF PCR 2021. The following Table describes each LCI data source and includes the data quality assessment.

MATERIALS	LCI DATA SOURCE	YEAR	GEOGRAPHY	DATA QUALITY
Portland Cement and Limestone Cement, ASTM C595, AASHTO M 240, or CSA A3001	Holcim - Ste. Genevieve Blended Type IL	2021	North America	Technology: very good, Time: very good, Geography: very good, Completeness: very good, Reliability: very good
Slag Cement, ASTM C989	Slag Cement Association EPD of North America Slag Cement (2021)	2021	North America	Technology: very good, Time: very good, Geography: very good, Completeness: very good, Reliability: very good
Fly Ash, ASTM C618	None, no incoming burden, only inbound transport is considered*	N/A	N/A	N/A
Silica Fume, ASTM C1240	None, no incoming burden, only inbound transport is considered*	N/A	N/A	N/A
Crushed Aggregates, coarse and fine, ASTM C33	ecoinvent 3.4: "Gravel, crushed {RoW} production Cut-off, U" (2018), modified with US average electricity	2001	World/US	Technology: very good, Time: poor, Geography: good, Completeness: very good Reliability: very good
Natural Aggregates, coarse and fine, ASTM C33	ecoinvent 3.4: "Gravel, round {RoW} gravel and sand quarry operation Cut-off, U" (2018), modified with US average electricity	2001	World/US	Technology: very good, Time: poor, Geography: good, Completeness: very good Reliability: very good
Manufactured Lightweight Aggregates, ASTM C330	ecoinvent 3.4: Expanded clay {RoW} production Cut-off, U (2018), modified with US average electricity	2000	World/US	Technology: good, Time: poor, Geography: good, Completeness: very good, Reliability: very good
Gypsum	ecoinvent 3.5: Gypsum, mineral {RoW} gypsum quarry operation Alloc Rec, U	2021	World/US	Technology: good, Time: poor, Geography: good, Completeness: very good, Reliability: very good
Admixtures and Carbon Dioxide, ASTM C494	GCP Applied Technologies LCA for Concrete Admixtures ecoinvent 3.5: Carbon dioxide liquid {RoW} production Cut-off U	2021	North America	Technology: very good, Time: very good, Geography: fair, Completeness: very good, Reliability: very good
Batch and Wash Water, ASTM C1602	ecoinvent 3.4: Tap water {RoW} market for Cut-off, U (2018), modified with US average electricity	2011	World/US	Technology: very good, Time: good, Geography: good, Completeness: very good Reliability: very good
Road Transport	USLCI 2014: Transport, combination truck, short-haul, diesel powered/tkm/RNA (2014)	2010	North America	Technology: very good, Time: fair, Geograph very good, Completeness: very good, Reliability: very good
Rail Transport	USLCI 2014: Transport, train, diesel powered / US U (2014)	2007	North America	Technology: very good, Time: fair, Geograph very good, Completeness: very good, Reliability: very good
Ocean Transport	USLCI 2014: Transport, ocean freighter, average fuel mix/US U (2014)	2007	North America	Technology: very good, Time: fair, Geograph very good, Completeness: very good, Reliability: very good
Electricity	ecoinvent 3.4: Electricity, low voltage {XX} market for Cut-off, U (2018)	2015	North America	Technology: very good, Time: very good, Geography: very good, Completeness: very good, Reliability: very good
Diesel	USLCI 2014: Diesel, combusted in industrial boiler / US U (2014)	2007	North America	Technology: very good, Time: fair, Geograph very good, Completeness: very good, Reliability: very good
Gasoline	USLCI 2014: Gasoline, combusted in equipment /US U (2014)	2007	North America	Technology: very good, Time: fair, Geograph very good, Completeness: very good, Reliability: very good
iquefied Propane Gas	USLCI 2014: Liquefied petroleum gas, combusted in industrial boiler /US U (2014)	2007	North America	Technology: very good, Time: fair, Geograph very good, Completeness: very good, Reliability: very good
Hazardous Solid Waste	ecoinvent 3.4: Hazardous waste, for incineration {RoW} treatment of hazardous waste, hazardous waste incineration Alloc, Rec, U (2018), modified with US electricity	2011	World/US	Technology: very good, Time: good, Geography: good, Completeness: very good Reliability: very good
Non-Hazardous Solid Waste	ecoinvent 3.4: Inert waste {RoW} treatment of, sanitary landfill Alloc Rec, U (2018), modified with US average electricity	2011	World/US	Technology: very good, Time: good, Geography: good, Completeness: very good Reliability: very good

^{*} The product category rules for this EPD recognize fly ash, silica fume and slag as recovered materials and thus the environmental impacts allocated to these materials are limited to the treatment and transportation required to use as a concrete material input.

CALCULATED RESULTS A1-A3

FACILITY: Kenosha 712

MIX NAME: 1050U

STRENGTH: 3000 psi @ 28 days

DECLARED UNIT: 1 cubic meter (1 cubic yard) ready mix concrete produced at

Ozinga Ready Mix Concrete

CORE MANDATORY IMPACT INDICATOR			PER YD3	PER M3
Global warming potential	GWP	kg C02e	157.50	206.01
Depletion potential of the stratospheric ozone layer	ODP	kg CFC11e	4.77E-06	6.23E-06
Acidification potential of soil and water sources	AP	kg SO2e	0.58	0.75
Eutrophication potential	EP	kg Ne	0.30	0.40
Formation potential of tropospheric ozone	SFP	kg 03e	13.54	17.71
Abiotic depletion potential for fossil resources	ADPf	MJ, NCV	1091.64	1427.81
Abiotic depletion potential for non-fossil mineral resources	ADPe	kg Sbe	0.24	0.31
Fossil fuel depletion	FFD	MJ Surplus	68.97	90.21
USE OF PRIMARY RESOURCES				
Renewable primary energy carrier used as energy	RPRE	MJ, NCV	27.20	35.58
Renewable primary energy carrier used as material	RPRM	MJ, NCV	0.00	0.00
Non-renewable primary energy carrier used as energy	NRPRE	MJ, NCV	1520.58	1988.84
Non-renewable primary energy carrier used as material	NRPRM	MJ, NCV	0.00	0.00
SECONDARY MATERIAL, SECONDARY FUEL A	AND RECOV	/ERED ENER	RGY	
Secondary material	SM	kg	0.00	0.00
Renewable secondary fuel	RSF	MJ, NCV	0.00	0.00
Non-renewable secondary fuel	NRSF	MJ, NCV	8.07	10.55
Recovered energy	RE	MJ, NCV	0.00	0.00
MANDATORY INVENTORY PARAMETERS				
Consumption of freshwater resources	FW	m3	1.23	1.60
Calcination and carbonation emissions	CCE	kg CO2e	70.89	92.73
INDICATORS DESCRIBING WASTE				
Hazardous waste disposed	HWD	kg	9.74E-04	1.27E-03
Non-hazardous waste disposed	NHWD	kg	1.59E-03	2.08E-03
High-level radioactive waste, conditioned, to final repository	HLRW	m3	3.80E-08	4.97E-08
Intermediate- and low-level radioactive waste, to final repository	ILLRW	m3	1.50E-06	1.96E-06
Components for re-use	CRU	kg	0.00	0.00
Materials for recycling	MR	kg	0.00	0.00
Materials for energy recovery	MER	kg	0.00	0.00
Recovered energy exported from the product system	EE	MJ, NCV	0.00	0.00

REFERENCES

- American Concrete Institute (2009) ACI 211.1:
 Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete
- American Concrete Institute (2008) ACI 318:
 Building Code Requirements for Structural
 Concrete.
- ASTM International General Program Instructions (2020) v8.0
- Bare, J. (2012) Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI) v2.1.
- European Federation of Concrete Admixture
 Associations (2015). EFCA Environmental
 Declarations for Admixtures.
- International Organization for Standardization
 (2017) ISO 21930:2017 Sustainability in buildings
 and civil engineering works Core rules for
 environmental product declarations of construction
 products and services.
- National Renewable Energy Laboratory (2019)
 U.S. Life Cycle Inventory Database http:// www.nrel.gov/lci/
- NSF International (2021) Product Category Rule for Concrete, Version 2.1

- ASTM International (2018) ASTM C94: Standard
 Specification for Ready-Mixed Concrete.
- Construction Specifications Institute (CSI)
 MasterFormat Division 03-30-00 Cast-in- Place
 Concrete
- CSA Group (2014) CSA A23.1-09/A23.2-14 Concrete materials and methods of concrete
 construction / Test methods and standard
 practices for concrete.
- EN 15804:2012 Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products.
- ISO 14040:2006 Environmental Management -Life cycle assessment - Principles and framework
- ISO 14044:2006/AMD 1:2017/ AMD 2:2020
 Environmental Management Life cycle
 assessment Requirements and guidelines
- Wernet, G., Bauer, C., Steubing, B., Reinhard, J.,
 Moreno-Ruiz, E., & Weidema, B. (2016) The ecoinvent database version 3 (part I): overview and methodology. The International Journal of Life Cycle Assessment, 21, 1218–1230.